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PREFACE

When a complex system such as the Apollo vehicle arrives
on the Moon, certain parts may no longer function. To
restore the system to a working state, these parts must
be replaced by new ones; but the vehicle can carry only
a limited number of spare parts and must also be able
to leave at a specified time after arrival. This Memorandum
investigates an abstract (and simplified) version of the
problem of the optimal maintenance procedure for such a
system. As a bonus of the abstract formulation, the
results obtained are applicable to a variety of specific

systems.



SUMMARY

This Memorandum investigates a system that may be
classified into one of three possible states: 0, 1, or 2.
Intuitively, we think of O being a ''failed" state, 1 a
"turned off' state, and 2 a 'working' state.

If the system is in state 2, we may make one of two
decisions: '"'Turn off'" or "Let run." With the first
decision the system goes instantaneously to state 1, while
with the second decision, the system will remain in state
2 with probability B, or go into state 0 with probability
1 —-B. If the system is in state 1, we may make the

decision '"Do nothing,"

which will leave the system in

state 1 at the next time period, or we may make the decision
"Turn on.'"  With this latter decision, at the next time
period the system will be in state 2 with probability @, or
in state 0 with probability 1 — a. Finally, if the system
is in state 0, we may make the decision '"Do nothing,' which
leaves the system in state 0, or we may make the decision

"Repair,"

which will put the system into state 1 after m
units of time.

The central problem is, what is the policy which maxi-—
mizes the probability of having the system in state 2 at time

n or n + k when at time 0 we have exactly r spare parts

for repairs, and what are these probabilities?
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Suppose we have a system that may be classified into
one of three possible states: 0, 1, or 2. Intuitively,
we think of 0 being a '"failed" state, 1 a 'turned off"
state, and 2 a ''working' state.

If the system is in state 2, we may make one of two

' With the first decision

decisions: '"Turn off" or "'Let run.'
the system goes instantaneously to state 1, while with the
second decision, the system will remain in state 2 with
probability B, or go into state 0 with probability 1 — B.
If the system is in state 1, we may make the decision ''Do

nothing, "

which will leave the system in state 1 at the
next time period, or we may make the decision "Turn on."
With this latter decision, at the next time period the
system will be in state 2 with probability @, or in state
0 with probability 1 — a. Finally, if the system is in

' which leaves

state 0, we may make the decision ''Do nothing,'
the system in state 0, or we may make the decision '"Repair,'
which will put the system into state 1 after m units of time.

Given the system described above, let us suppose that
"repairs' are made by installing new parts.

The central problem we wish to investigate is what is

the policy which maximizes the probability of having the

system in state 2 at time n or n + k when at time 0 we

have exactly r spare parts for repairs, and what are these
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probabilities? For the case when k = 0, this problem was
solved in [1].

At this point we shall make a few comments on the
applicability of the abstract model to concrete situations.
It turns out that when the system is initially in state 1,,
then we may delay a certain time before attempting to turn
it on; but once we do turn it on, we never deliberately turn
it off. Thus our results could apply to a system that had
no provision for turn—off provided we always start with
the system in a "failed" or '"just ready to go'' state.

There are several specific situations to which our
model applies. We mention only two as illustrations.

1. A piece of electrical equipment that is needed to
work at set specified times in the future (such as, for
example, a radio transmitter). The identification of @
and B and the states 0, 1, and 2 are evident.

2. Suppose we wish to use a satellite to record some
activity (e.g., solar flares) that we know will occur at
specified times in the future. If we have no functioning
satellite and none ready to go, we are in state 0. If we
have no functioning satellite, but have one on the launching
pad ready to fire, we are in state 1. State 2 corresponds
to having a satellite in orbit and functioning. One unit
of time is the time from firing the missile until the
satellite is in orbit, and the "repair" time is the time
required to take a missile from storage and get it ready

to fire (countdown, etc.). The probability of successful
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launch is a@. The probability that a functioning satellite
continues to function is B.

Another use of the two—time model presented here is to
compensate for error in the one—time model given in [1].
That is, we may be interested in having the system in state
2 at _some time approximately n. The two—time model is
relevant to this problem for the following reason.

If we have a system as described above, except that
we wish to be in state 2 at at least one of the times
ny < n, < Lle < nj, then as long as nj < ny + m+ 1, the
optimal policy and the associated probabilities are exactly
the same as in the two—time case (nl, nj). To see this,
simply observe that the dynamic programming equations for
the multitime case are the same as those for the two—time
case and, moreover, that the two—time case and the multi—
time case have exactly the same initial conditions and
boundary conditions. Hence the probabilities under an
optimal policy must be the same.

The above fact enables us then to use the results of
the two—time problem to solve the important problem of find—
ing the probabilities under an optimal policy for having the
system in state 2 at about time n, that is, of having the
system in state 2 in some point in the interval n £ &§. As
long as 26 < m + 1, we simply solve the two—time problem

for (n— &, n+58).



n + k, given that

state is i. Then

(1.1) QO(O; n, n

(1.2) Qo(r; n, n

(1.3) (35 n, n

(1.4) Qy(r; m, n

the following:

t to—
that B ° <a<p?®
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et Q.(r; n, n enote the probability under an
L Ql( + k) d h babili d

optimal policy that the system is in state 2 at time n or

at time 0 we have r spares and the initial

the following equations govern the Qi:

+ k)

+ k)

+ k)

+ k)

1

03

max {Qo(r; n—1l, n+k—1);

Qlr-1; -mh @+k-m,
r >0, n> 0;

max {Ql(r; n—1, n—1+Kk);

aQy(r; n— 1, n— 1 +k)

+(1-0a) Q(r; n—1, n—1+k)],
r >0, n> 0;

max {BQy(r; n— 1, n— 1 +k)

+ (1= B) Qy(r; n— 1, n— 1 +Kk)}

r>0, n>0.

If the initial state is 0 or 1, then the initial condition
for n = 0 must be that for the optimal probabilities in the
case of a one—time system for time k. Let t; > 0 be such

; then from the results of [1] we have



(1) Iftg<m+1,

0, ifk<m or if r =0 ,

(1.5)  Qq(r, 0, k) = By(x, k) =

a, ifk>m and if r > 0 ;
(1.6) Ql(r, 0, k) = Pl(r, k) = a, k >0 ;
(1.7) Qz(r, 0, k) =1 .

(ii) 1If ty > m+ 1,

(1.8) Qy(r, 0, k) = Py(r, k)

0, if k <m, or if r o,

a(l4a+t...+ad L), if j(ml) — 1 < k

In

(G+1) (mtl) — 1

=

for 0 <j<r, r>0,

OL(1+a+...+ar—1), ifr(ml) <k <o, x>0 ;
L

(19) Ql(r: 0, k) = Pl(r’ k)
a(l+a+. . .+ad), if §(mHl) < k < (§+1) (mHl)
= for 0 <j<r, r>0,

a(l+a+. . .+a"), if r(ml) <k < w, r >0 ;

(1.10) Qy(xr, 0, k) = 1, where a = p™1 — a .
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For the model presented we explicitly find the optimal

probabilities and the optimal policy for all values of

m+1 m+1l >

r, n, k, m, when B a

3

< a, and for all r, n, m, when B

m+1 > a and

provided k < m + 1. In the remaining case, P
k > m+ 1, the problem becomes intractable beyond the value
r = 2. Experiments on a computer for special values of q,
f in this range indicate that the policy tends to become
increasingly complex and to depend more and more on the
explicit value of a and B.

We state our results as follows:

Theorem 1. Suppose Bm+1 <a, 0 <k <m an

[aN

tO <m=—%k + 1. Then

i) 4ifr =0,

=a , nz2ty;
(ii) ifr=>1,
QO =0 , n <m-—k,
=aqa , n>m-—k,
Q =o,
Q, = B, n<tyo




The optimal policy is the following. If in state O
initially, repair (if possible), delay until time n — 1
and restart. If in state 1 initially, delay restart until
time n — 1 and then try. If in state 2, let the system run
if n < tys but if n > tps turn the system off and pursue

state 1 policy.

Theorem 2. Suppose 6HH1 <a, 0 <k <m, and
m~k+1<ty<m+1. Thenif we set b= (™ F*l —q),
we have
(i) if r = 0, then Qs Qs Q2 are as in Theorem 1(i);
(ii) ifr=1,
QO =0 , n<m-—%k,
=a, n>m-%k ;
Ql =qa , 0O<n<m-k+1,
=0a + ab , n>m—k+1;
Q, =B", n<m-k+1,

ety v o, m-k+l<ns<m-k+¢,

a + ab , n>m-—k + tO 5
(iii) ifr > 2,

QO =0, n<m-—k,
s m—k<n<2m—k+1,

| =a + ab , n>2m—k + 1 ;

and Q1 and Q2 are the same as in (ii).
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The optimal policy for r = 0 is the same as in
Theorem 1. If r > 0 then, if initially in state 0, repair
(if possible) and pursue the policy for state 1 over the
remaining time period. If in state 1, we delay turnmon
until time n — 1, and then attempt turn on, if n < m— k + 1.
However, when n > m — k + 1, we delay turmon until time
n— (m— k + 2), attempt turn—on, and then pursue the
optimal policy for the resulting state over the remaining
time period. If initially we are in state 2, we let the
system run if n < m — k + s but if n >m— k + ty, We turn
the system off and pursue the policy for state 1.

Theorem 3. Suppose Bm+l < @ and k > m. Then

(1) ifr =0,

Ql-a:
_

Q2 6 K n<t0 »
= Q , n 2 t0

a+a(l —a), n>0 ;

Q =p"1=-a)+a, n<ty,
=a+ (1 — a)a, n > t0 H
(iii) ifr>1,
QO = qa , n<m,
=a+ (1 -a), n>m,;

and Q and Q, are as in case (ii).
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The optimal policy is as follows. If initially
the state is 0 we "'repair" (if possible) and then pursue
the policy for state 1 over the remaining time period.
If initially we are in state 1 we delay until time
k — 1 and then turnon if n = 0,but if n > 0 we delay
until time n — 1 and fire and if we miss then we install
a new unit if r > 0 and delay turn—on until time k — 1.
If in state 2 we let the system run if n < tys but if
n > t; we turn the system off and pursue the policy
for state 1.

m+1

Theorem 4. Suppose that a < B and 1 <k < m + 1.
Let a = Bm+1 — aand b = Bm_k+l — a. Then

i) ifr =0,

I
o
e
\Y
o

Qy(0; n, n +k) if n 2>

Q]_(O; n, n + k)

I
Q

s ifn>0;

g, if0_<_n<t0,
Qz(o; n, n+k)-=

a , if t4, < n



(i1)

o
Fh
R
Y%
=

0, if0O<n<m+1l-k,

i
Hh
.
1
'—I
Nt

|
W

A

i1 -
Qo(r;n,n-l-k) = <OLF1 + h_(l_—a_J_) <n< (j#+1) (m+l) — k

_.r-1\ -
a1+hﬂ—a——lj, if r(mHl) —k < n 3

a , if0<n<m+1-k,

Q (rsn,ntk) = <a[1 + 1—’—%:2—31] if j(mtl) — k < n < (JH)(m+l) — k

and 1 < j<r,

r
La[l +b—(L——a—)-:l, if r(mtl) — k < n

1-a
n .
B if0o<n<m+1-%k,

a[l + b_Ll—_aJil] + pad"lpn~[3 (mtl)—k]

if j(mtl) —k < n < (JH1)(mtl) — k
Qz(r;n:n'i'k) = < and 1<j<r

ran— [r (m+1)—k]

Q
I = J
-+
on
=
|
o))
a1
i
[t
—
+
o
o))

if r(mtl) "k < n < r(mHl) — k + £

_.r
‘a[l +1—)'('1—a—')-:l, if r(mt+l) —k+t0§n .




An optimal strategy is:

State 0: Ifr = 0 or n <m — k, there is no
possibility of success. Otherwise,
repair and pursue the policy for
state 1.

State 1: If r = 0, delay until time n — 1, then
turnon. Ifr=0and if 0 <n<m+1-k,
delay until time n + k — 1, then turn on.
Ifr>0, jm+1) - k+1<n< (J+1)(m+1) -k,
and 1 < j < r, delay until time n— [j(m + 1) — k + 1]
and then turn on. If r > 0 and if
r(m+ 1) —k +1 < n, delay until time
n— [r(m+ 1) — k + 1] and then turn on.

State 2: If r =0 and ty < n, or if r > 0 and
r(m+ 1) — k + ty < n, turn off and
pursue the policy for state 1. Otherwise,

let the system run.

Theorem 5. Suppose Bm+l >a and k > r(m + 1).
Then

(1) if r =0,

O
N
|
ey
o
-
Hh

_n<t0:

o
3
v
-

0’



Q1=OL(1+a), ifn=0,
=qa(2 —a), ifn>0;

Q =F'(1 -0 +a, if n <ty
=a(2_a); i.ﬁnzto,

(iii) if r = 2,

Q =a(l +a), if n <m,
=a(2 —a) ; ifn>m;

Q = a(l + a + az) s

-

Hh

3
n

|
A
3
AN

=a(l — a(l+a)) + a(l + a) , <m+1,
= aa(l — 8™y a2 - @) , ifn>m+1 ;

Q, = 8™(1 — a(l+a)) + a(l + a) , if0O<n<m+1,
=" ™MD - ap™) 4 a@2-a), ifm+l<nsm+rt,,
= aa(l - aBm+1) +a(2 - a) , ifm+ ty <n

An optimal strategy is:

State 0: If r = 0, there is no possibility of success.
If r > 0, repair and then pursue the strategy
for state 1.

State 1: If r = 0 or 1, do nothing until time n — 1
and then turn on. If r = 2 and n > m + 2,
do nothing until time n — (m + 2) then
turn on. If r = 2 and n < m + 2, do nothing

until time n — 1 then turn on.




State 2: Ifr =0 or 1 and n > ty or ifr =2
and n > ty +m + 1, turn off and pursue
the strategy for state 1. Otherwise

let the system run.

PROOFS

Proof of Theorem 1. (i) The result for Q is

obvious. Ql(O, 0, k)= a and QZ(O’ 0, k) = 1. Assume
that we have established the result for all n < Ny,
ng +1 < ty. Then for ny + 1 we have by Egs. (1.3)
and (1.4) that

n
Q (0, ng +1, ny +1+k) =max {a; ap 0} =a ;

no+1 n0+1

max {B ;y a} =P

Q,(0, ny + 1, ng + 1 + k)

Hence (i) holds for all n < ty: If n = ty, We have

t, 1
max {a; aB © } = ;

‘ Q (0, ty, ty + k)

t
max {B °

Q,(0, ty, ty + k) ; a) =a .
Induction on n now completes the proof of (i).

(ii) Clearly Q0 =0 if n < m — k. Hence no matter
what r is, we must have that Q and Q, are the same as

the r = 0 case for all n < m — k. Now



max {a; az} =a ;

Q(r;s m—k+1, m+1)

Qz(r; m—k+1, m+ 1) =max {a; a} =a ;

and induction then shows that Q1 = Q, Q2 =0,all n>m—-—k + 1.
Since Qo(r, n, n +k) = Ql(r — 1, n—m n—m+ k) for
all n > m, we have by induction on r that Qo(r, n, n +k) =aqa,

all n > m — k. This completes the proof of Theorem 1.

Proof of Theorem 2. (i) The same argument used to

establish Theorem 1(i) shows that (i) is valid. (ii) 1If
n <m - k, then QO must be 0. Induction on n shows that

our formulas for Q and Q2 are certainly valid for n < m — k:

Q(l; m=k +1, m+ 1)
Ql(l;m—k+l,m+1)

Q 0, 0, 1) = a ;
aﬁm_k}

max {al; = q

mk+1 mk+l ;
b

Q(; m—k+1, m+1) = max {B

a} =B

which establishes the formula for n =m — k + 1. For

n>m-—%k + 1 we have

Ql; n, n+k) =Q0; (n~m3 n+k-m]=oa;

max {a; ap™ KTl 4 (1 — a))
mk+1

Ql(l, m—k+ 2; m+ 2)
=a + a(p - a) ;

Q(L, m— k + 2) = max (8™ <2 4+ (1 - B)a; o + ab} = a + Bb.

Suppose we have established the formula for n, m — k + 1 <

n<m-—k + to.



Then

Q (1, n+1, n+1+k)

=Qqa 4+ ab ;

max {pPHIT(mk+L) (1 _gya; o + ab)
n+1—(m—k+1)b )

Q2(1, n+1l, n+1+k)

So the formulas are valid for all n, m—k +1 <n<m-—k + g

For n = m— k + ty + 1, we readily compute that Ql a + ab,

while Q2 becomes @ + ab. 1Induction on n now completes the

max {a + ab; a(a + Bn-(m—k+1)) + (1 — a)a}

proof. (iii) Qo(r; n, n +k) = Ql[r -1, (n— m)+, (n +k — m)+],

and thus for r = 2, we have that the formula for QO is valid.
Hence for all n £ 2m + 1 — k, we have that the expression
for Q1 and Q2 are the same as in the r = 1 case. But for

n > 2m — k + 2, we have that Q2 = Q1 = o + ab, and so we
must have that Q1 = Q2 =a +ab for all n > 2m + k + 1.

This establishes the formulas for r = 2. Assuming that

we have established them for g > 2, we then have, by the

same argument, that they are valid for r; + 1.

Proof of Theorem 3. (i) A simple induction argument
on n establishes this result. (ii) Qy(1, 0, k) = o,
Q (L, 0, k) =, and Qy(1, 0, k) = 1. We have that
Q(l, n, n +k) =a for all n.

Q(1, 1, k +1) =max {a; a + (1 — a)a}
Qz(l: 1: k + 1) = max {6 + (l - ﬁ)a; Ct}

a+1-—-a)a
B(l—a) +a .



Induction on n now easily establishes the formula. (iii)
It is clear that Qo(r; n, n +k) = Qo(l, n, n+ k) if

n < m, and thus Q1 and Q2 are the same as in the r = 1
case, at least for all n < m + 1. Since Qo(r; n, n + k) =
Ql(r — 1, n—m, n+k —m) for n > m, we see that if we
have established the formulas for r, then we will have
that they hold for r + 1, since Q and Q2 =a+ (1 —a)a

for all n > m.

Proof of Theorem 5. Proof of Theorem 5 will precede

that of Theorem 4. First let r = 0. Q = 0 by (1.1).
Q(0; 0, k) = a, and Qy(0; 0, k) =1 by (1.9) and (1.10).
Suppose n > 0 and the formulas for Q;(0; n, n + k), i =1

or 2, are correct. Then

Q0; n+1, n+1+k)

I
Q

= max {a, GQZ(O; n, n+k) + (1 —-a) - 0}

If n < tO’

QZ(O; n+1l, n+1+k)

= max {a, Bn+1 + (1 -8) -0} = Bn+l s ifn+1

If n > tys
QO; n+ 1, n+1+k) =max {a, Ba + (1 —B) - 0]

Now suppose r = 1. The formulas for Qi(l; 0, k)
follow from (1.8) — (1.10), since k > m + 1. Suppose n >

s ifn+1>



and Qo(l; n, n+ k) = a.
Then
Qo(l; n+1l, n+ 1+ k)
= max (a, Ql(O; (n+1—m)+, (n+1—m+k)+) = a
by (1.9) or the case r = 0.

We have

Ql(l; 1, 1+ k) =max (a(lL + @), a+ (L — a)a) =a(2 — a),
since a = BmH' —a<1l-—a. Supposen > 1 and

Q(l; n, n+ k) = a2 — o). Then

Ql(l; n+1l, n+ 1+ k)

max (a(2 — o), an(l; n, n+ k) + (L — a)a)
C"(Z - O') s

since Q2(1; n, n+ k) <1 for n> 0.
Suppose n > 0 and the formula for Q2(l; n, n+ k) is

correct. If n =0,

Q2(1; 1, 1 + k) max (a(l + a), B+ (1L — B)a)

max (a + aa, a+ B(l — a)) =a+ B(l —a),

mt+1

since B > B >ocandl—a>Bm+l—a=a.

If0<n<t0,

Q2(1; n+1l, n+ 1+ k)
= max (a(2 — a), B(B™(1 — o) + a) + (1 — B)a)
= max (a(l — a) + a, BT - 0) + a)
=Bn+l(1—a)+°‘: ifn+1l<t,,

=q(l —a) + a, ifn+l=to.



1f to_gn,

Q2(1; n+1l, n+ 1+ k)

max (a(2 — a), B(a(2 —a)) + (1 — B)a)

max (a2 — a), a(2 = a) = (1 = B)(a(l = a)))
a(2 — a).

Finally let r = 2. The values for Qi(2; 0, k)
follow from (1.8)—(L.10) since k > 2(m + 1). Suppose 0 < n
and the formula for QO(Z; n, n+ k) is correct. Then

if n < m,

Qo(2; n+1l, n+ 1+ k)

max (a(l + a), Ql(l; O, n+ 1+ k —m))

max (a(l + a), a(l + a)) = a(l + a).
1f n_>_m:

Qo(2; n+ 1l, n+ 1 + k)

max (QO(2; n, n+ k), Ql(l; n—m+1l, n—=m+ 1+ k))

max (QO(Z; n, n+ k), a(2 — a)) = a(2 — a),

since a(l + a) < a(2 — q).
Suppose n > 0 and the formulas for Qi(2; n, n + k),

i =1 or 2, are correct.

Case 1. n =0:

max (a(l + a + a2), a+ (1 — a)a(l + a))
max (a(l + a(l + a)), a(l + (1 — a)(1 + a)))
=a(l+ (1 —a)(1 +a)) =a(l —a(l +a)) +a(l + a).

Q (2 1, 1+ k)



Q,(2; 1, 1 + k)

=max (a(l —a(l + a)) + a(l + a), 8+ (1 — B)a(l + a))
max (a(l — a(l + a)) + a(l + a), B(L — a(l + a)) + a(l + a))
=p(1l —a(l +a)) + a(l + a).

Case 2. 1 nm:

Q(2; n+ 1, n+1+Kk)
= max (a(l — a(l + a)) + a(l + a), ap”™ (1 — a(l + a)) + a(l + a))
= a(l —a(l + a)) + a(l + a);

Q2(2; n+1l, n+ 1+ k)
= max(a(l — a(l + a)) + a(l + a), 8™ 1(

=™l @1 + a)) + a(l + a).

1 —a(l +a)) + a(l + a))

Case 3. n=m+ 1:

Q1(2; n+1l, n+ 1+ k)
= max (a(l—a(l+a))+a(l+a) , o™ (1—a(1+a) )+a? (1+a)+(1—) a(2—a) )
=max ( aa(l — a) + a(2 - a), aa(l — aBmH') + a(2 — a))

= qa(l — o™ 4 a2 = ) ;

Q2(2; n+1l, n+ 1+ k)
= max (aa(l—f™ DY +a(2—a) , 8™ 2 (1—a(l+a) )+Ba(l+a)+(1—B) a(2—a))
= max (aa(l — a8™1) + a(2 = @), Ba(l — a8™1) + a(2 — @)
= pa(l — ™) + a2 — ).

Case 4. m+ 1l <nm+ t,:

Ql(2; n+1l, n+ 1+ k)

n—(mt1)

= max (aa(l-ap™1)+a(2—), op a(1—p™ 1) +a(2—0))

= qa(l — ocBmH) + a2 — a);



Q2(2; n+1l, n+ 1+ k)

max (aa(l——aBnH-]‘)+a(2—a) s Bn+l—(m+1) a(l—or.ﬁm*—l)+a(2—a))
_ grHl—(m+l)

aa(l—aBnH-l)+a(2-—-a), ifn+1>m+to.

3

a(l—-aBm‘.l)+a(2—a), ifn+1<m+ t

Case 5. m+ t < n:

Q (25 n+ 1, n+1+Kk)
= max (aa(l—at™ M) +a(2—a), a?a(l—as™h)+a(2—a))
= qa(l — aB™) + a(2 - a);

Q2(2; n+ 1, n+ 1+ k)
= max (ca(l—ag™D) + a(2-q), Baa(l—ap™1) + a(2—a))

= qa(l — aBmH') + a(2 — a).
The proof is now complete by induction on n.

Proof of Theorem 4: First we need a lemma.

Lemma., Let r >0 and 1 < k < m+ 1. Then

Qo(r;n,n+k)=0, if0<n<m+ 1 —Kk,

=aq, ifm+1—-—k<{n<m,

Ql(r—l; n—m, n—tk) if m < n.

Proof. First suppose 0 < n<m+ 1 —k. Then k <m+ 1,
SO Qo(r; 0, k) =0 by (1.5) and (1.8). If n > O,then
Qo(r; n, n+ k) = max (Qo(r; n—-1, n-1+k), Ql(r—l; 0, 0))
= Q,(r; n-1, n-1+k) =0
by induction. Now supposen=m+ 1 —k. Ifm+ 1 -k =0,

then Qo(r; n, n+ k) = Qo(r; 0, m+ 1) = a by (1.5) and (1.8).




Ifm+ 1 -k > 0, then

Q,(r; n, n+ k)

max (Qo(r; m—k, m), Ql(r —1; 0, 1))

= max (0, a) = a.
If m+ 1 -k < n g mthen

Qo(r; n, n + k) = max (Qo(r;n—l, n—-1+k), Ql(r—l;O, n—mtk))

= max (Qo(r;n—l, n-14k), a) by (1.6) and (1.9)

= max (a, o) = o
by induction on n. Since
Q(r;s my m+ k) =a=0Q(r—-1; 0, k),

we have now established the lemma for O < n<m

Finally, suppose n > m and the lemma is true for n — 1,

Then

Qo(r;n,n-i-k) max (Ql(r—lgn—l—m,n—l—m-l-k), Ql(r—l;n—m,n-nﬂ-k))

Q (r-1; n—m, n—mtk)

by (1.3). This completes the proof of the lemma.

The theorem for r = 0 follows from Theorem 5.
Suppose r > 0 and the formulas for Qi(r —1; n, n+ k),
i =0, 1, 2, are correct for all n > 0, Then the formula
for Qo(r; n, n+ k) for all n > 0 follows from this in—
ductive assumption and the lemma. The formulas for
Qi(r; n, n+ k), i =1 or 2, follow from (1.9) and (1.10)

for n = 0.



Suppose that they are correct for some n > 0, and we

will prove them for n + 1.

Case 1.
Ql(r; n
Qz(r; n

Case 2.

Ql(r; n

Qz(r; n

Case 3.

Set i =

Q(r; n

Qz(r§ n

0<n<m+1-k:

+1, n+1+k) =max {a, of" + (1-a) - 0} = o ;

n+1 n+1

+1, n+ 1+ k) =max {a, B + (1 -8) 0} =8 .

n=m+4+1-— k:

m+1—k

+ 1, n+1+k) = max {a, ap + (1 — a)a}

= max {a, a(l + b)}
=o¢(1+b)=ou[:1+1l{-1—_—_—ail ;
+1, n+1+k) =max {a(l +b), 82K 4 (1 - p)yy

= max {a + ab, a + Bb}

a + Bb
0
a' bl —a’) Ogn+l—(m+1-k)
1 + 1= & ]+ ba”B .

jm+1) "k <n< (+1)(m+1) —kand 1 < j < r:
n— (j(m+ 1) — k). Then

+1, n+ 1 +k)
max {1+ BA= 1] o7y A= eI g0
+ (1= oyd1+ = 23'—1 1}
max {af 1 + L’%:—Zh]’ o 1+ h‘%—:—?j—l] - a1 - shHpalH

+1, n+1+Kk)

max {G{l + hil—*aj_l], Bo{l + 2= aj_l)] + padlpitl

a

_ J1
r -1+ 232 zJ )




since

Ql(r§

Qz(r;

Let 1

B

Case 4.

Case 5.

max {a[l + b — 2j—1)] + abal "t

1 b
i—1 , .
b(l — al 7) i+l, _j—1
oc[l + —2 ] + pitly, }
b(l — al 141, =1
oc[l+ — ]+5 bal L |
i+l > Bm+1 S a
n=(+1)(m+1)—kand 1 < j < r:

+1, n+1+k)

max {of 1 + hi.}_:_gil] o1 + 0= :j—l):\ . abaj—16m+1

+ol - a)[l + 8 1 - a ]}
max {oc[l + b_(_l__—_aé_).], a[l 4+ b = aJ+1)]}

1 - a 1 - a

b(l — J+1)]

of 1 + 2=42

+1, n+1+k)

max {a[l + b(} — Zj+l)], aﬁ[l + b(i = Zj—ll] + pad " lpmt2

+a-p)1+ hi%—:—g—jl]}

max{[1+_f-——l]+aba o1 +2 %IZj ] + ppal}

1 +b0=80] 4 popol

r(m+1) —k<n<r(m+1l —k + ty:
n— [r(m+ 1) — k]. Then




Y
Q(rin+1, n+1+Kk)
o s R3], o 2y
+aba™ 18t + (1 - @y 1 + RO 2r_l)]}

= max {1 + 22207, of1 4 RA=a0)]

_ a(l _ Bi)bar—l}
- o[+ 2G=T

Qz(r;n+1, n+ 1+ k)

=max{[1 l—a s BOL[I +b(l—ar_1):‘

a

£ paflpitl 4 (g = B)a[l s = :r_l)]}

- max {of 1 + RO a‘“l)] + bl o1 4 ROS ar‘l)]

1-a 1 — a
+51+1 r—l}
=a[1+b(%:a )]+{31+1 r—l ifi<t0—1:
=a{1+ 1_a , ifi=ty—1,
since fori<t0—1, Bi+126to_l>a, while for
i+l _

i=t0_1:B

Case 6. an(m+1)—k+to;

- 1 _.r
Let A=dof1 +2 =28 )1 .4 p-qf1+20=227,
1l — a




Then A < B, so

Ql(r;n+l,n+1+k)

max {B, aB + (1 — a)A}
=max {B, B— (1 — a)(B — A}

and

Qz(r;n+1,n+1+k)

max {B, BB + (1 — B)A}

=max {B, B— (1 — B)(B — A}

By induction on n, the theorem is proved for r and

any n > 0. By induction on r, the theorem is established.
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